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Book Review: The Self-Avoiding Walk

The Self-Avoiding Walk, N. Madras and G. Slade, Birkhéuser, Boston,
1993, xiv + 425 pp. (hard cover 1993, soft cover 1996).

From the preface: “A self-avoiding walk (SAW) is a path on a lattice that
does not visit the same site more than once. In spite of this simple defini-
tion, many of the most basic questions about this model are difficult to
resolve in a mathematically rigorous fashion.”

This monograph is an up to date—and essentially complete—account
of the mathematically rigorous results that were known by 1993 for SAWs
on lattices, typically Z¢ (d>1). In addition, it describes a variety of Monte
Carlo algorithms that have been used to simulate SAWs, and lists results
that have been obtained via exact enumeration. It also includes a brief
description of heuristic methods coming from physics and chemistry, in
particular, scaling theory. Not included are renormalization group methods
and conformal invariance in two dimensions. However, this would have
made the monograph too long.

The monograph is written for probabilists, mathematical physicists
and combinatorialists. A prerequisite for reading is a knowledge of elemen-
tary probability and analysis, and some background in statistical physics.
The style of the monograph is such that it systematically builds up the
mathematical theory of SAW while letting itself be driven by ideas coming
from statistical physics, in particular, the theory of critical phenomena.
Much care is taken to constantly provide the reader with this context and
motivation, which makes for very pleasant reading. The text is well
organized, there are historical notes at the end of every chapter, and there
is an exhaustive list of references. It is nice to see the panorama of SAW
develop as one goes along, and a good deal of nice applied probability is
encountered along the way.

SAW is closely linked with other models from statistical physics, like
the Ising and Potts model, percolation, lattice trees and lattice animals. In
all these models scaling theory and critical exponents are among the key
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properties to be investigated. SAW is the simplest example in this class of
models and therefore serves as a kind of paradigm.

Chapter 1 gives an outline of the basic questions in the area, which
concern the following quantities:

(1) ¢,(0, x), the number of n-step SAWs beginning at 0 and ending
at x;

(2) ¢,=>,c,(0, x), the number of n-step SAWs beginning at 0;

(3) w=lim,_ . ¢!, the connective constant;

(4) G.(0,x)=3,502"c,(0, x) (|z| <z.=1/u), the two-point function;
(5) x(z2)=2,s02", (|z] <z.), the susceptibility;

(6) &(z)=[-lim,, . o (1/m)log G,(0,me)] ' (le|=1), the correla-
tion length;

(7) Jom)|*>>=(1/c,) 3. |x|? ¢,(0, x), the mean-square displacement
of a typical n-step SAW.

A list is made of the conjectures for the various critical exponents that
are believed to characterize the asymptotic behavior of these quantities for
n— o0, |x| > oo or z7z,.. These conjectures are part of the folklore of the
area, and some of them are proved later on. There is also a discussion of
the role of the “bubble diagram” B(z)=3,[G.(0, x)]% showing that
B(z,) < oo signals mean-field behavior. In this chapter the stage is set for
the rest of the monograph.

Chapter 2 describes non-rigorous ideas from scaling theory, as it
applies to a variety of models of which SAW is an example. There is a
description of Flory’s heuristic argument identifying the critical exponent in
the conjecture < |w(n)|*> ~Dn* (n— o0) as v=max{3, 3/(d+2)}, which
1s known to be correct for d=1 and d >4, believed to be correct for d=2
and d=4 (modulo a logarithmic correction), and known to be wrong for
d=13. Furthermore, there is a discussion of the connection, first discovered
by de Gennes, that SAW arises as the N — 0 limit of an N-vector model,
where spins take values in the N-dimensional sphere of radius \/N and
interact via a Hamiltonian summing the inner products of nearest-neighbor
spins. This connection is pivotal for much of the scaling theory.

Chapter 3 derives upper and lower bounds on ¢, for Z¢ (d>2) due to
Hammersley—Welsh and Kesten. For d=2, 3 and 4 these bounds are still
the best rigorous results known to date. The proofs all make use of the
notion of subadditivity, in combination with various geometrical opera-
tions, such as concatenating, cutting or reflecting SAWs. Related results
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are described for self-avoiding bridges (SABs) and self-avoiding polygons
(SAPs).

Chapter 4 contains a detailed study of G,(0, x). In particular, for
|z| <z, a proof is given of Ornstein—Zernike decay as x moves out along
a lattice axis. The proof proceeds by first deriving the result for SABs and
then extending to SAWs. A key tool is a renewal type argument for SABs.

Chapter 5 develops the “lace expansion” for SAW, originally intro-
duced by Brydges and Spencer. This is a diagrammatic technique in which
the two-point function is expanded in terms of certain irreducible loop
diagrams, in the spirit of cluster expansions in statistical physics. Two ways
to obtain the lace expansion are described: (i) via the inclusion-exclusion
principle; (ii) via an algebraic calculation involving weight factors. The
goal in this chapter is to set up the machinery that is used in Chapter 6 to
prove mean-field behavior of SAW for d > d., with d, =4 the upper critical
dimension. The issue of convergence of the expansion is deferred to Chap-
ter 6. Also derived are bounds on the lace expansion in terms of the two-
point function, which play a key role in Chapter 6 to establish convergence
of the lace expansion for d>d,. These bounds are in fact valid more
generally for models with a “repulsive” interaction. To illustrate the general
context, the lace expansion is also set up for lattice trees, lattice animals
and percolation, although these are not used later in the monograph. Over
the past decade or so, the lace expansion method has emerged as the main
tool for establishing mean-field behavior in a variety of models above their
upper critical dimension. Most of the material discussed in Chapters 5 and
6 is based on work of Hara and Slade.

Chapter 6 uses the lace expansion for SAWs that was set up in
Chapter 5 to derive mean-field behavior for: (I) nearest-neighbor SAW in
sufficiently high dimensions; (II) “sufficiently spread out” SAW in any
dimension d>4 (where spread out means that the steps of the SAW are
not restricted to nearest-neighbors but to some finite box). In particular,
the convergence issue is settled here. A whole series of results is discussed,
showing that for both (I) and (II) the critical exponents exist and assume
their mean-field value as predicted by the heuristic scaling theory. In a way,
this chapter is the apotheosis of the monograph, showing that all the basic
results that are believed to be true in arbitrary dimension are actually
rigorously true above the upper critical dimension d,=4. Hara and Slade
have given a computer-assisted proof of the convergence of the lace expan-
sion for nearest-neighbor SAW in dimension >S5, but this is technically
complex and therefore is not included.
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Chapter 7 discusses Kesten’s pattern theorem. A pattern is any finite
SAW that occurs as part of a longer SAW. The theorem says that if a
pattern can occur at least three times on a SAW, then it occurs at least an
times on an n-step SAWSs for all n sufficiently large and some a>0
(depending on the pattern), with the exception of a subclass of the SAWs
that is exponentially small in #. The proof is geometrical and uses patterns
enclosed in cubes. The pattern theorem has a number of interesting conse-
quences. For instance, it implies ratio limit theorems for ¢, and its
analogue for SABs and SAPs. There are strong results for the fraction of
SAWs in which a certain pattern occurs either at the very beginning or at
the very end. These are used in analyzing the behavior of certain Monte
Carlo algorithms.

Chapter 8 describes a potpourri of results: (a) upper bounds on
¢,(0, x) for SAWs and SABs with the help of the renewal type argument in
Chapter 4; (b) analysis and comparison of the connective constants for
SAWs, SABs and SAPs in confined geometries (i.e., subsets of Z¢ like
tubes, slabs or wedges); (c) construction of the “infinite” SAB; (d) a proof
that “unknotted” SAPs form an exponentially small subclass (ie., long
SAPs are typically intertwined a lot). Most of these results make use of
Kesten’s pattern theorem. The infinite SAB is constructed as follows. Given
a finite pattern w, let p,(®) denote the fraction of SABs of length n that
begin with w. It is shown that lim, _,  p,.(®)= p(w) exists for all w. This
defines a probability measure p(-) on finite SABs, which is consistent and
therefore uniquely defines a probability measure on infinite SABs. For
SAWs the convergence is known only for cases (I) and (II) in Chapter 6.

Chapter 9 is a self-contained mini-review of Monte Carlo algorithms
that have been used to simulate SAWs. It opens with some simple examples
that serve to illustrate the main questions and problems one has to face,
and describes some statistical theory one needs in order to handle the data
properly. The rest of the chapter describes a variety of algorithms, with
special emphasis on rigorous analysis of ergodicity and performance
quality: (i) static methods, where the algorithm generates a single SAW
with prescribed properties; (i) dynamic methods, where the algorithm
generates a Markov chain whose equilibrium is a prescribed probability
measure on a class of SAWs. A comparison is made between algorithms
that make local vs. global moves, generate SAWs of fixed vs. variable
length, and fixed vs. variable endpoint. Typically it is hard to obtain
rigorous results about the performance quality, but some are proved here.

Chapter 10 discusses a miscellany of related topics: (a) weakly self-
avoiding walk (where intersections are not forbidden but are discouraged)
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and its Brownian analogue; (b) loop-erased random walk (obtained from
an infinite random walk path by successively erasing loops); (c) intersec-
tion properties of two or more simple random walks; (d) the “true” SAW
(a random process with transition rates that discourage self-intersections).
Models (b) and (d) have a behavior that is different from SAW, though
very reminiscent. Model (a), on the other hand, falls in the same univer-
sality class.

The monograph closes with three appendices on simple random walk,
renewal theory and exact enumeration, respectively.

Since 1993, a number of interesting developments have taken place.
The most important of these are:

1. Implementation of the lace expansion for lattice trees, directed
percolation, and percolation, leading to a proof of mean-field behavior
above the upper critical dimensions for these models.

2. Complete analysis of weakly SAW and “true” SAW in dimension
d=1 with the help of large deviation methods.

3. More refined analysis of intersection exponents for two or more
simple random walks.

4. Improved results from Monte Carlo algorithms and exact
enumeration. Reference: S. G. Whittington (editor), Numerical Methods for
Polymeric Systems, The IMA Volumes in Mathematics and its Applica-
tions 102, Springer, New York, 1998.

5. Further refined predictions for two-dimensional SAWs via con-
formal invariance. Results for SAWs with self-attraction and for SAWs
interacting with a surface. Reference: C. Vanderzande, Lattice Models of
Polymers, Cambridge Lecture Notes in Physics 11, Cambridge University
Press, Cambridge, 1998.
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